Answer:
The final angular velocity is rev/s is 0.293 rev/s.
Explanation:
Given;
mass of the merry-go-round, m₁ = 120 kg
radius of the merry-go-round, r = 1.8 m
initial angular velocity, ω = 0.4 rev/s
mass of the child, m₂ = 22 kg
Apply the principle of conservation angular momentum to determine the final angular velocity;
[tex]I_i= I_f\\\\\frac{1}{2} m_1r^2 \omega _i = \frac{1}{2} m_1r^2 \omega _f + m_2r^2 \omega _f\\\\ \frac{1}{2} m_1r^2 \omega _i =( \frac{1}{2} m_1r^2 + m_2r^2 )\omega _f\\\\\omega _f = \frac{ \frac{1}{2} m_1r^2 \omega _i}{\frac{1}{2} m_1r^2 + m_2r^2} \\\\\omega _f = \frac{ \frac{1}{2} m_1 \omega _i}{\frac{1}{2} m_1 + m_2}\\\\\omega _f = \frac{0.5 \ \times \ 120\ kg \ \times \ 0.4\ rev/s}{0.5 \ \times 120\ kg \ \ + \ \ 22 \ kg} \\\\\omega _f = 0.293 \ rev/s\\[/tex]
Therefore, the final angular velocity is rev/s is 0.293 rev/s.