A ladder 25 feet long is leaning against the wall of a house. The base of the ladder is pulled away from the wall at a rate of 2 feet per second. (a) What is the velocity of the top of the ladder when the base is given below

Respuesta :

This question is incomplete, the complete question is;

A ladder 25 feet long is leaning against the wall of a house. The base of the ladder is pulled away from the wall at a rate of 2 feet per second. (a) What is the velocity of the top of the ladder when the base is given below

7 feet away from the wall

15 feet away from the wall

20 feet away from the wall

Answer:

- When x is 7 feet away from the wall, [tex]\frac{dr}{dt}[/tex] = -7/12 ft/s

- When x is 15 feet away from the wall, [tex]\frac{dr}{dt}[/tex] = -3/2 ft/s

- When x is 20 feet away from the wall, [tex]\frac{dr}{dt}[/tex] = -8/3 ft/s

Explanation:

Given the data in the question;

Let [tex]r[/tex]ft and [tex]x[/tex]ft represent the distance of the top of ladder from the ground and the distance of the bottom of ladder from the wall respectively.

Now using the Pythagoras Theorem ( right angled triangle ).

(hypotenuse)² = ( adjacent )² + ( opposite )²

so

r² = ( 25 )² - x²

r² = 625 - x² ------- let this be equation 1

now, we differentiate with respect to t

2r [tex]\frac{dr}{dt}[/tex] = 0 - 2x [tex]\frac{dx}{dt}[/tex]

r [tex]\frac{dr}{dt}[/tex] = -x [tex]\frac{dx}{dt}[/tex]

[tex]\frac{dr}{dt}[/tex] = -x [tex]\frac{dx}{dt}[/tex] × 1/r

[tex]\frac{dr}{dt}[/tex] = -x/r [tex]\frac{dx}{dt}[/tex]

Now, from equation, r² = 625 - x²

r = √( 625 - x² )

Then

[tex]\frac{dr}{dt}[/tex] = -x / √( 625 - x² ) [tex]\frac{dx}{dt}[/tex]

given that, The base of the ladder is pulled away from the wall at a rate of 2 feet per second i.e [tex]\frac{dx}{dt}[/tex] = 2 ft/s

so;

[tex]\frac{dr}{dt}[/tex] = ( -x / √( 625 - x² ) ) × 2

[tex]\frac{dr}{dt}[/tex] = -2x / √( 625 - x² )

When x is 7 feet away from the wall;

[tex]\frac{dr}{dt}[/tex] = -2(7) / √( 625 - (7)² )

[tex]\frac{dr}{dt}[/tex] = -14 / √( 625 - 49 )

[tex]\frac{dr}{dt}[/tex] = -14 / √576

[tex]\frac{dr}{dt}[/tex] = -14 / 24

we simplify

[tex]\frac{dr}{dt}[/tex] = -7/12 ft/s

Therefore, When x is 7 feet away from the wall, [tex]\frac{dr}{dt}[/tex] = -7/12 ft/s

When x is 15 feet away from the wall

[tex]\frac{dr}{dt}[/tex] = -2(15) / √( 625 - (15)² )

[tex]\frac{dr}{dt}[/tex] = -30 / √( 625 - 225 )

[tex]\frac{dr}{dt}[/tex] = -30 / √400

[tex]\frac{dr}{dt}[/tex] = -30 / 20

we simplify

[tex]\frac{dr}{dt}[/tex] = -3/2 ft/s

Therefore, When x is 15 feet away from the wall, [tex]\frac{dr}{dt}[/tex] = -3/2 ft/s

When x is 20 feet away from the wall

[tex]\frac{dr}{dt}[/tex] = -2(20) / √( 625 - (20)² )

[tex]\frac{dr}{dt}[/tex] = -40 / √( 625 - 400 )

[tex]\frac{dr}{dt}[/tex] = -40 / √225

[tex]\frac{dr}{dt}[/tex] = -40 / 15

we simplify

[tex]\frac{dr}{dt}[/tex] = -8/3 ft/s

Therefore, When x is 20 feet away from the wall, [tex]\frac{dr}{dt}[/tex] = -8/3 ft/s