Respuesta :
Answer:
Vector (ordered pair - rectangular form)
[tex]\vec F = (27.189,12.679)\,[lbf][/tex]
Vector (ordered pair - polar form)
[tex]\vec F = (30\,lbf, 25^{\circ})[/tex]
Sum of vectorial components (linear combination)
[tex]\vec F = 27.189\cdot \hat{i} + 12.679\cdot \hat{j}\,[N][/tex]
Step-by-step explanation:
From statement we know that force exerted on the wagon has a magnitude of 30 pounds-force and an angle of 25° above the horizontal, which corresponds to the +x semiaxis, whereas the vertical is represented by the +y semiaxis.
The force ([tex]\vec F[/tex]), in pounds-force, can be modelled in two forms:
Vector (ordered pair - rectangular form)
[tex]\vec F = \left(\|\vec F\|\cdot \cos \theta, \|\vec F\|\cdot \sin \theta\right)[/tex] (1)
Vector (ordered pair - polar form)
[tex]\vec F = \left(\|\vec F\|, \theta\right)[/tex]
Sum of vectorial components (linear combination)
[tex]\vec {F} = \left(\|\vec F\|\cdot \cos \theta\right)\cdot \hat{i} + \left(\|\vec F\|\cdot \sin \theta \right)\cdot \hat{j}[/tex] (2)
Where:
[tex]\|\vec F\|[/tex] - Norm of the vector force, in newtons.
[tex]\theta[/tex] - Direction of the vector force with regard to the horizontal, in sexagesimal degrees.
[tex]\hat{i}[/tex], [tex]\hat{j}[/tex] - Orthogonal axes, no unit.
If we know that [tex]\|\vec F\| = 30\,lbf[/tex] and [tex]\theta = 25^{\circ}[/tex], then the force exerted on the wagon is:
Vector (ordered pair - rectangular form)
[tex]\vec F= \left(30\cdot \cos 25^{\circ}, 30\cdot \sin 25^{\circ}\right)\,[lbf][/tex]
[tex]\vec F = (27.189,12.679)\,[lbf][/tex]
Vector (ordered pair - polar form)
[tex]\vec F = (30\,lbf, 25^{\circ})[/tex]
Sum of vectorial components (linear combination)
[tex]\vec F = (30\cdot \cos 25^{\circ})\cdot \hat{i} + (30\cdot \sin 25^{\circ})\cdot \hat{j}\,[N][/tex]
[tex]\vec F = 27.189\cdot \hat{i} + 12.679\cdot \hat{j}\,[N][/tex]