Ava wants to draw a parallelogram on the coordinate plane. She
plots these 3 points.

Part A
Find and label the coordinates of the fourth vertex, K, of the
parallelogram. Draw the parallelogram.

Part B
What is the length of side JK? How do you know?​

Respuesta :

Answer:

[tex]k =(2,1)[/tex]

[tex]JK = 2[/tex]

Step-by-step explanation:

Given

[tex]J = (0,1)[/tex] ---- [tex](x_1,y_1)[/tex]

[tex]H = (1,-2)[/tex] --- [tex](x_2,y_2)[/tex]

[tex]I = (3,-2)[/tex] --- [tex](x_3,y_3)[/tex]

See attachment for grid

Solving (a): The coordinates of K

The parallelogram has the following diagonals: IJ and HK

Diagonals bisect one another. So:

Midpoint of IJ = Midpoint of HK

This gives:

[tex]\frac{1}{2}(I + J) = \frac{1}{2}(H+K)[/tex]

[tex]\frac{1}{2}(x_3+x_1,y_3+y_1) = \frac{1}{2}(x_2+x,y_2+y)[/tex]

[tex]\frac{1}{2}(3+0,-2+1) = \frac{1}{2}(1+x,-2+y)[/tex]

[tex]\frac{1}{2}(3,-1) = \frac{1}{2}(1+x,-2+y)[/tex]

Multiply through by 2

[tex](3,-1) = (1+x,-2+y)[/tex]

By comparison:

[tex]1 + x = 3[/tex]

[tex]-2 + y = -1[/tex]

Solve for x and y

[tex]x = 3 - 1 =2[/tex]

[tex]y = -1 +2 = 1[/tex]

So, the coordinates of k is:

[tex]k =(2,1)[/tex]

The length of JK is calculated using distance (d) formula

[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2[/tex]

[tex]J = (0,1)[/tex] ---- [tex](x_1,y_1)[/tex]

[tex]k =(2,1)[/tex] ---- [tex](x_2,y_2)[/tex]

So:

[tex]d = \sqrt{(0 - 2)^2 + (1 - 1)^2[/tex]

[tex]d = \sqrt{(- 2)^2 + (0)^2[/tex]

[tex]d = \sqrt{4 + 0[/tex]

[tex]d = \sqrt{4[/tex]

[tex]d = 2[/tex]

Hence:

[tex]JK = 2[/tex]

Ver imagen MrRoyal