You are exploring a small moon of a distant planet. Measurements indicate that this moon is a sphere of uniform density rho = 5000 kg/m3. You dig a very deep hole into the moon that reaches within r0 = 1000 m of the center of the moon. With your spacesuit, you have a mass of m = 85 kg. Find the force of gravity on you when you stand at the bottom of the hole.

Respuesta :

Answer:

The force of gravity will be "0.11874 N"

Explanation:

The given values are:

Density of planet,

Q = 5000 Kg/m³

Inside radius,

r₀ = 1000 m

Now,

The mass of inside sphere will be:

⇒  [tex]m_p=density\times volume[/tex]

⇒        [tex]=5000\times \frac{4}{3}\pi r^3[/tex]

On putting the values, we get

⇒        [tex]=5000\times \frac{4}{3}\times \pi\times (1000)^3[/tex]

⇒        [tex]=85 \ kg[/tex]

hence,

The force of gravity will be:

=  [tex]\frac{Gm_{planet} m_{person}}{r^2}[/tex]  

=  [tex]\frac{6.67\times 10^{-11}\times 5000\times 4\pi\times 85\times 1000}{3}[/tex]

=  [tex]\frac{6.67\times 10^{-11}\times 4\pi\times 425000000}{3}[/tex]

=  [tex]0.11874 \ N[/tex]