The area of the triangle shown is represented by A=s(s−14)(s−12)(s−6)−−−−−−−−−−−−−−−−−−−−√A=s(s−14)(s−12)(s−6), where s is equal to half the perimeter. What is the height h of the triangle? Round your answer to the nearest hundredth.

The area of the triangle shown is represented by Ass14s12s6Ass14s12s6 where s is equal to half the perimeter What is the height h of the triangle Round your ans class=

Respuesta :

Answer:

[tex]h=5.11ft[/tex]

Step-by-step explanation:

[tex]S=12+6+14/2=16[/tex]

[tex]area ~A= \sqrt{s(s-14)(5-12)(5-6)}[/tex]

[tex]area=\sqrt{16(16-14)(16-12)(16-6)}[/tex]

[tex]A=\sqrt{16×2×4×10}[/tex]

[tex]A=35.70[/tex]

[tex]A=1/2× base~×height[/tex]

[tex]35.70=1/2×14×h[/tex]

[tex]h=2×35.75/14[/tex]

[tex]h=5.11ft[/tex]

。・:*:・゚★,。・:*:・゚☆

hope it helps...

have a great day!!