The area of the triangle shown is represented by A=s(s−14)(s−12)(s−6)−−−−−−−−−−−−−−−−−−−−√A=s(s−14)(s−12)(s−6), where s is equal to half the perimeter. What is the height h of the triangle? Round your answer to the nearest hundredth.

Answer:
[tex]h=5.11ft[/tex]
Step-by-step explanation:
[tex]S=12+6+14/2=16[/tex]
[tex]area ~A= \sqrt{s(s-14)(5-12)(5-6)}[/tex]
[tex]area=\sqrt{16(16-14)(16-12)(16-6)}[/tex]
[tex]A=\sqrt{16×2×4×10}[/tex]
[tex]A=35.70[/tex]
[tex]A=1/2× base~×height[/tex]
[tex]35.70=1/2×14×h[/tex]
[tex]h=2×35.75/14[/tex]
[tex]h=5.11ft[/tex]
。・:*:・゚★,。・:*:・゚☆
hope it helps...
have a great day!!