Respuesta :

Nayefx

Answer:

[tex] \displaystyle x \approx 47.44[/tex]

Step-by-step explanation:

we are given a right angle triangle

we want to figure out x i.e hypotenuse

in order to do so we can consider trigonometry i.e sin

remember that,

[tex] \displaystyle \sin( \theta) = \frac{opp}{hypo} [/tex]

given that,theta=21° and opp=17 and hypo=x

Thus substitute:

[tex] \displaystyle \sin( {21}^{ \circ} ) = \frac{17}{x} [/tex]

cross multiplication:

[tex] \displaystyle x\sin( {21}^{ \circ} ) = {17}[/tex]

divide both sides by sin21°:

[tex] \displaystyle x \frac{\sin( {21}^{ \circ} ) }{ \sin( {21}^{ \circ}) }= \frac{17}{ \sin( {21}^{ \circ} ) }[/tex]

By using calculator we acquire:

[tex] \displaystyle x \approx 47.44[/tex]