Use the Law of Cosines to write an expression equivalent to c. Drag the expressions to show what the values of the variables should be in the radical.

Answer:
[tex] \boxed{\begin{array}{ccc} m = {a}^{2} \\ \hline n = {b}^{2} \\ \hline p = 2ab \\ \hline q = \cos(C) \end{array}}[/tex]
Step-by-step explanation:
recall the formula for law of cosine
[tex] \rm \displaystyle {c}^{} =\sqrt{ {a}^{2} + {b}^{2} - 2ab \cos(C) }[/tex]
thus we acquire
Answer:
Solution given:
m=a²
n=b²
p=2ab
q=Cos(C)
law of cosine
[tex] c = \sqrt{a²+b²−2abcos(C)} [/tex]