Respuesta :

Nayefx

Answer:

[tex] \boxed{\begin{array}{ccc} m = {a}^{2} \\ \hline n = {b}^{2} \\ \hline p = 2ab \\ \hline q = \cos(C) \end{array}}[/tex]

Step-by-step explanation:

recall the formula for law of cosine

[tex] \rm \displaystyle {c}^{} =\sqrt{ {a}^{2} + {b}^{2} - 2ab \cos(C) }[/tex]

thus we acquire

  • m=a²
  • n=b²
  • p=2ab
  • q=Cos(C)
msm555

Answer:

Solution given:

m=a²

n=b²

p=2ab

q=Cos(C)

law of cosine

[tex] c = \sqrt{a²+b²−2abcos(C)} [/tex]