Cora is using successive approximations to estimate a positive solution to
f
(
x
)
=

g
(
x
)
, where
f
(
x
)
=
x
2
+
13
and
g
(
x
)
=
3
x
+
14
. The table shows her results for different input values of
x
.

Respuesta :

By successive approximations we find that [tex]x \approx 3.3[/tex] for [tex]f(x) = g(x)[/tex].

How to find a solution of two functions by direct inspection

According to the table, the value of [tex]x[/tex] must be between 3 and 3.5. [tex]x[/tex] is the solution of [tex]f(x) = g(x)[/tex] if and only if [tex]f(x) - g(x) = 0[/tex]. Let suppose that [tex]x = 3.3[/tex], then:

[tex]3.3^{2}+13 = 3\cdot (3.3) + 14[/tex]

[tex]-0.01[/tex]

As we need only two decimals, approximation seems to be reasonable.

By successive approximations we find that [tex]x \approx 3.3[/tex] for [tex]f(x) = g(x)[/tex]. [tex]\blacksquare[/tex]

Remark

Statement is incomplete and incorrectly formatted, correct form is presented below:

Cora is using successive approximations to estimate a positive solution to [tex]f(x) = g(x)[/tex], where [tex]f(x) = x^{2}+13[/tex] and [tex]g(x) = 3\cdot x + 14[/tex]. The table shows her results for different input values of [tex]x[/tex]:

x         f(x)           g(x)

 0         13             14

 1          14             17

 2         17             20

 3         22            23

 4         29            26

3.5     25.25       24.5

To learn more on numerical methods, we kindly invite to check this verified question: https://brainly.com/question/19034634