Respuesta :

Answer:

x = [tex]\frac{16}{\sqrt{2} }[/tex] and y = [tex]\frac{16}{\sqrt{2} }[/tex]

Step-by-step explanation:

Applying the trigonometric functions to the given triangle;

i. To determine the value of x;

Sin θ = [tex]\frac{opposite}{hypotenuse}[/tex]

Sin 45 = [tex]\frac{x}{16}[/tex]

x = 16 * Sin 45

  = 16 * [tex]\frac{1}{\sqrt{2} }[/tex]

x  = [tex]\frac{16}{\sqrt{2} }[/tex]

ii. To determine the value of y;

Cos θ = [tex]\frac{adjacent}{hypotenuse}[/tex]

Cos 45 = [tex]\frac{y}{16}[/tex]

y = 16 * Cos 45

  = 16 * [tex]\frac{1}{\sqrt{2} }[/tex]

y  = [tex]\frac{16}{\sqrt{2} }[/tex]

Thus, x = [tex]\frac{16}{\sqrt{2} }[/tex] and y = [tex]\frac{16}{\sqrt{2} }[/tex]