Respuesta :
Answer:
[tex] \frac{1}{ \sqrt{10} } [/tex]
Step-by-step explanation:
[tex] \bigg( \frac{3}{2}, \: \: \frac{1}{2} \bigg) = (x, \: y) \\ \\ \implies \: x = \frac{3}{2} \: \: y = \frac{1}{2} \\ \\ r = \sqrt{ {x}^{2} + {y}^{2} } \\ = \sqrt{ { \bigg( \frac{3}{2} } \bigg)^{2} + { \bigg( \frac{1}{2} } \bigg)^{2}} \\ = \sqrt{ \frac{9}{4} + \frac{1}{4} } \\ = \sqrt{ \frac{10}{4} } \\ r = \frac{ \sqrt{10} }{2} \\ \\ \sin \theta = \frac{y}{r} \\ \\ \sin \theta = \frac{ \frac{1}{2} }{ \frac{ \sqrt{10} }{2} } \\ \\ \sin \theta = \frac{1}{ \sqrt{10} } [/tex]
Answer:
The answer is,[tex]\frac{1}{\sqrt{10} }[/tex]
Step-by-step explanation:
Definition of terminal point:
The Unit Circle's Terminal Points Begin at the unit circle's point (1,0). Walk for 't' units in a counterclockwise direction. The "terminal point" is where you finally arrive (x,y).
According, to the question:
[tex](\frac{3}{2} ,\frac{1}{2} =(x,y)\\x=\frac{3}{2},\frac{1}{2} \\r=\sqrt{x^{2} +y^{2} } \\\sqrt{\frac{9}{4}+\frac{1}{4} } \\\sqrt{\frac{10}{4} } \\r=\sqrt{10} /2[/tex]
[tex]sin[/tex]θ=[tex]\frac{y}{x}[/tex]
[tex]sin[/tex]θ= [tex]\frac{1}{2} /\sqrt{10}/2\\[/tex]
[tex]sin[/tex]θ=[tex]\frac{1}{\sqrt{10} }[/tex]
the terminal point are [tex]\frac{1}{\sqrt{10} }[/tex]
To know more about terminal point here, https://brainly.com/question/24085885
#SPJ2