Respuesta :

Answer:

[tex]\cos\theta=0.53[/tex]

Step-by-step explanation:

Given that,

[tex]\tan\theta=\dfrac{8}{5}[/tex]

We know that,

[tex]\tan\theta=\dfrac{P}{B}[/tex]

Where

P is perpendicular and B is base

Let H is hypotenuse of triangle. Using Pythagoras theorem,

[tex]H^2=P^2+B^2\\\\H=\sqrt{P^2+B^2} \\\\H=\sqrt{8^2+5^2} \\\\H=9.43[/tex]

We know that,

[tex]\cos\theta=\dfrac{B}{H}\\\\\cos\theta=\dfrac{5}{9.43}\\\\\cos\theta=0.53[/tex]

So, the value of [tex]\cos\theta[/tex] is equal to 0.53.