Answer:
[tex]\cos\theta=0.53[/tex]
Step-by-step explanation:
Given that,
[tex]\tan\theta=\dfrac{8}{5}[/tex]
We know that,
[tex]\tan\theta=\dfrac{P}{B}[/tex]
Where
P is perpendicular and B is base
Let H is hypotenuse of triangle. Using Pythagoras theorem,
[tex]H^2=P^2+B^2\\\\H=\sqrt{P^2+B^2} \\\\H=\sqrt{8^2+5^2} \\\\H=9.43[/tex]
We know that,
[tex]\cos\theta=\dfrac{B}{H}\\\\\cos\theta=\dfrac{5}{9.43}\\\\\cos\theta=0.53[/tex]
So, the value of [tex]\cos\theta[/tex] is equal to 0.53.