Respuesta :

Given:

Consider the function is:

[tex]f(x)=\dfrac{x^2}{3}[/tex]

To find:

The average rate of change over the interval 2 ≤ x ≤ 4.

Solution:

We have,

[tex]f(x)=\dfrac{x^2}{3}[/tex]

At [tex]x=2[/tex],

[tex]f(2)=\dfrac{2^2}{3}[/tex]

[tex]f(2)=\dfrac{4}{3}[/tex]

At [tex]x=4[/tex],

[tex]f(4)=\dfrac{4^2}{3}[/tex]

[tex]f(4)=\dfrac{16}{3}[/tex]

The average rate of change of a function f(x) over the interval [a,b] is:

[tex]m=\dfrac{f(b)-f(a)}{b-a}[/tex]

So, the average rate of change over the interval 2 ≤ x ≤ 4 is:

[tex]m=\dfrac{f(4)-f(2)}{4-2}[/tex]

[tex]m=\dfrac{\dfrac{16}{3}-\dfrac{4}{3}}{2}[/tex]

[tex]m=\dfrac{\dfrac{16-4}{3}}{2}[/tex]

On further simplification, we get

[tex]m=\dfrac{12}{3\times 2}[/tex]

[tex]m=\dfrac{12}{6}[/tex]

[tex]m=2[/tex]

Therefore, the average rate of change over the interval 2 ≤ x ≤ 4 is 2.