Find the length of the third side if necessary right in simplest radical form

Answer:
[tex] \large{ \tt{❃ \: SOLUTION}} : [/tex]
[tex] \large{ \tt{✻ \: USING \: PYTHAGOREAN\: THEOREM : }}[/tex]
[tex] \large{ \tt{❁ {h}^{2} = {p}^{2} + {b}^{2} }}[/tex]
[tex] \large{ ↦( \sqrt{61} })^{2} = {5}^{2} + {b}^{2} [/tex]
[tex] \large{↦ \: 61 = 25 + {b}^{2} }[/tex]
[tex] \large{↦25 + {b}^{2} = 61 }[/tex]
[tex] \large{↦ {b}^{2} = 61 - 25}[/tex]
[tex] \large{↦ {b}^{2} = 36}[/tex]
[tex] \large{↦ {b} = \sqrt{36} }[/tex]
[tex] \large{↦ b = \sqrt{ \underline{3 \times 3} \times \underline{ 2 \times 2} }}[/tex]
[tex] \large{↦b = 3 \times 2}[/tex]
[tex] \large{ \boxed{ \boxed{ \bold{↦b = 6 \: units }}}}[/tex]
✺ Never give up on something that you actually want !
۵Hope I helped! ツ
☼ Have a wonderful day / night ! ☃
# StayInAndExplore ! ☂
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
___________________________________
[tex]\quad\quad\quad\quad\boxed{\tt{ {c}^{2} = \sqrt{ {a}^{2} + {b}^{2} }}} [/tex]
[tex]\quad\quad\quad\quad\tt{ a = 5 } [/tex]
[tex]\quad\quad\quad\quad\tt{ b = ? } [/tex]
[tex]\quad\quad\quad\quad\tt{ {c = \sqrt{61} }} [/tex]
[tex]\quad\quad\quad\quad\tt{ {( \sqrt{61}) }^{2} = \sqrt{ {(5)}^{2} + {b}^{2} }} [/tex]
[tex]\quad\quad\quad\quad\tt{ {61}= \sqrt{ {25} + {b}^{2} }} [/tex]
[tex]\quad\quad\quad\quad\tt{ 61 = \sqrt{ 25 + {b}}} [/tex]
[tex]\quad\quad\quad\quad\tt{ {b } = \sqrt{25 - 61 }} [/tex]
[tex]\quad\quad\quad\quad\tt{ {b } = \sqrt{36 }}[/tex]
[tex]\quad\quad\quad\quad\tt{ {b } = 6 }[/tex]
[tex]\quad\quad\quad\quad \boxed {\boxed{\tt{ \color{magenta} {b } = 6\:units }}}[/tex]
___________________________________
#CarryOnLearning
✍︎ C.Rose❀