Calculate the length of AC, to the nearest tenth of a centimeter.

Answer:
AC ≈ 11.0 cm
Step-by-step explanation:
Using Pythagoras' identity in Δ CDE and Δ ADE
CE² + DE² = DC²
CE² + 7² = 8²
CE² + 49 = 64 ( subtract 49 from both sides )
CE² = 15 ( take the square root of both sides )
CE = [tex]\sqrt{15}[/tex]
-------------------------------------------------------
AE² + DE² = DA²
AE² + 7² = 10²
AE² + 49 = 100 ( subtract 49 from both sides )
AE² = 51 ( take the square root of both sides )
AE = [tex]\sqrt{51}[/tex]
Then
AC = AE + CE = [tex]\sqrt{15}[/tex] + [tex]\sqrt{51}[/tex] ≈ 11.0 cm ( to the nearest tenth )