Respuesta :

Answer:

[tex]\log_{3} ({5\sqrt{x}} * y ) = \log_{3}({5) + \log_{3}(\sqrt{x}) +\log_{3}( y )[/tex]

Step-by-step explanation:

Given

[tex]\log_{3} ({5\sqrt{x}} * y )[/tex]

Required

Write as sum or difference

Using addition law of logarithm, the equation becomes:

[tex]\log_{3} ({5\sqrt{x}} * y ) = \log_{3}({5\sqrt{x}) +\log_{3}( y )[/tex]

Expand

[tex]\log_{3} ({5\sqrt{x}} * y ) = \log_{3}({5 * \sqrt{x}) +\log_{3}( y )[/tex]

Apply addition law

[tex]\log_{3} ({5\sqrt{x}} * y ) = \log_{3}({5) + \log_{3}(\sqrt{x}) +\log_{3}( y )[/tex]