HELP TIMER Write the equation of a hyperbola centered at the origin with x-intercept +/- 4 and foci of +/-2(squareroot 5)

Given:
x-intercepts of the hyperbola are ±4.
The foci of hyperbola are [tex]\pm 2\sqrt{5}[/tex].
Center of the hyperbola is at origin.
To find:
The equation of the hyperbola.
Solution:
The general equation of a hyperbola:
[tex]\dfrac{(x-h)^2}{a^2}-\dfrac{(y-k)^2}{b^2}=1[/tex] ...(i)
Where, (h,k) is the center of the hyperbola, ±a are x-intercepts, [tex](\pm c,0)[/tex] are foci.
Center of the hyperbola is at origin. So, h=0 and k=0.
x-intercepts of the hyperbola are ±4. So,
[tex]\pm a=\pm 4[/tex]
[tex]a=4[/tex]
The foci of hyperbola are [tex]\pm 2\sqrt{5}[/tex].
[tex]\pm c=\pm 2\sqrt{5}[/tex]
[tex]c=2\sqrt{5}[/tex]
We know that,
[tex]a^2+b^2=c^2[/tex]
[tex](4)^2+b^2=(2\sqrt{5})^2[/tex]
[tex]16+b^2=20[/tex]
[tex]b^2=20-16[/tex]
[tex]b^2=4[/tex]
Taking square root on both sides, we get
[tex]b=\sqrt{4}[/tex] [b>0]
[tex]b=2[/tex]
Substituting [tex]h=0,k=0,a=4,b=2[/tex] in (i), we get
[tex]\dfrac{(x-0)^2}{4^2}-\dfrac{(y-0)^2}{2^2}=1[/tex]
[tex]\dfrac{x^2}{4^2}-\dfrac{y^2}{2^2}=1[/tex]
Therefore, the correct option is (d).