Respuesta :

Given:

x-intercepts of the hyperbola are ±4.

The foci of hyperbola are [tex]\pm 2\sqrt{5}[/tex].

Center of the hyperbola is at origin.

To find:

The equation of the hyperbola.

Solution:

The general equation of a hyperbola:

[tex]\dfrac{(x-h)^2}{a^2}-\dfrac{(y-k)^2}{b^2}=1[/tex]            ...(i)

Where, (h,k) is the center of the hyperbola, ±a are x-intercepts, [tex](\pm c,0)[/tex] are foci.

Center of the hyperbola is at origin. So, h=0 and k=0.

x-intercepts of the hyperbola are ±4. So,

[tex]\pm a=\pm 4[/tex]

[tex]a=4[/tex]

The foci of hyperbola are [tex]\pm 2\sqrt{5}[/tex].

[tex]\pm c=\pm 2\sqrt{5}[/tex]

[tex]c=2\sqrt{5}[/tex]

We know that,

[tex]a^2+b^2=c^2[/tex]

[tex](4)^2+b^2=(2\sqrt{5})^2[/tex]

[tex]16+b^2=20[/tex]

[tex]b^2=20-16[/tex]

[tex]b^2=4[/tex]

Taking square root on both sides, we get

[tex]b=\sqrt{4}[/tex]                    [b>0]

[tex]b=2[/tex]

Substituting [tex]h=0,k=0,a=4,b=2[/tex] in (i), we get

[tex]\dfrac{(x-0)^2}{4^2}-\dfrac{(y-0)^2}{2^2}=1[/tex]

[tex]\dfrac{x^2}{4^2}-\dfrac{y^2}{2^2}=1[/tex]

Therefore, the correct option is (d).