Respuesta :

ItzTds

Answer:

2 non real solutions.

Step-by-step explanation:

We need to use discriminant,

for ax²+bx+c=0

The discriminat is b²-4ac

If the discriminant is,

→ less than 0, then 0 real solutions

→ equal to 0, then 1 real solutions

→ more than 0, then 2 real solutions

Given that,

7x²−4x+3=0

a=7, b=-4, and c=3

→ (-4)²-4(7)(3)

→ 16-84

→ -68

You can see this is less than 0, then non real solutions. [2 nonreal solutions]

msm555

Answer:

Solution given:

7x²-4x+3=0

taking common 7

7(x²+4/7*x+3/7)=0

x²+2*x*2/7+(2/7)²-(2/7)²+3/7=0

(x+2/7)²=-17/49

x+2/7=[tex]\sqrt{\frac{17}{49}}[/tex]

x=±√(17)/7-2/7

taking positive

x=√(17)/7-2/7

x=0.39

taking positive

x=-√(17)/7-2/7

x=-0.87

2:unreal number