Respuesta :

Recall the Trigonometric Ratio below:

[tex] \tt{ \large{sin \theta = \frac{opposite}{hypotenuse} } }\\ \tt{\large{cos \theta = \frac{adjacent}{hypotenuse} }} \\ \tt{ \large{tan \theta = \frac{opposite}{adjacent} }}[/tex]

For csc, sec and cot - they are reciprocal of sin,cos and tan.

[tex] \tt{ \large{csc \theta = \frac{1}{sin \theta} } }\\ \tt{ \large{sec \theta = \frac{1}{cos \theta} }} \\ \tt{ \large{cot \theta = \frac{1}{tan \theta} }}[/tex]

What we know now is our hypotenuse, adjacent and opposite length.

  • hypotenuse = 15
  • opposite = 12
  • adjacent = 9

Therefore,

[tex] \large{sin \theta = \frac{12}{15} \longrightarrow \frac{4}{5} } \\ \large{cos \theta = \frac{9}{15} \longrightarrow \frac{3}{5} } \\ \large{ tan \theta = \frac{12}{9} \longrightarrow \frac{4}{3} }[/tex]As for the reciprocal of three trigonometric ratio. We just swap the numerator and denominator.

[tex] \large{csc \theta = \frac{15}{12} \longrightarrow \frac{5}{4} } \\ \large{sec \theta = \frac{15}{9} \longrightarrow \frac{5}{3} } \\ \large{cot \theta = \frac{9}{12} \longrightarrow \frac{3}{4} }[/tex]

Answer

  • sin = 12/15 —> 4/5
  • cos = 9/15 —> 3/5
  • tan = 12/9 —> 4/3
  • csc = 15/12 —> 5/4
  • sec = 15/9 —> 5/3
  • cot = 9/12 —> 3/4

The first is non-simplifed form while the second that has the arrow pointing is the simplest form.

Let me know if you have any doubts.

to nem ai se vc excluiu minha respostpa q soud o5  oa

n