Answer:
[tex]P(6am-12\ noon) = 0.305[/tex]
[tex]P(12\ noon - 6pm) = 0.143[/tex]
[tex]P(6pm-12\ midnight) = 0.322[/tex]
[tex]P(12\ midnight - 6am) =0.230[/tex]
Step-by-step explanation:
Given
[tex]\begin{array}{cc}{Time} & {Inventors} & {6am - 12\ noon} & {295} & {12\ noon -6pm} & {138} & {6pm - 12\ midnight} & {311} & {12\ midnight - 6am} & {222} & {Total} & {966} \ \end{array}[/tex]
Required
The probability of each time interval
To do this, we simply divide the number of inventors in the interval by the total inventors (966)
So, we have:
[tex]P(6am-12\ noon) = \frac{6am-12\ noon}{Total}[/tex]
[tex]P(6am-12\ noon) = \frac{295}{966}[/tex]
[tex]P(6am-12\ noon) = 0.305[/tex]
[tex]P(12\ noon - 6pm) = \frac{12\ noon - 6pm}{Total}[/tex]
[tex]P(12\ noon - 6pm) = \frac{138}{966}[/tex]
[tex]P(12\ noon - 6pm) = 0.143[/tex]
[tex]P(6pm-12\ midnight) = \frac{6pm-12\ midnight}{Total}[/tex]
[tex]P(6pm-12\ midnight) = \frac{311}{966}[/tex]
[tex]P(6pm-12\ midnight) = 0.322[/tex]
[tex]P(12\ midnight - 6am) =\frac{12\ midnight - 6am}{Total}[/tex]
[tex]P(12\ midnight - 6am) =\frac{222}{966}[/tex]
[tex]P(12\ midnight - 6am) =0.230[/tex]