Respuesta :

Answer:

sinA = - [tex]\frac{\sqrt{5} }{\sqrt{6} }[/tex]

Step-by-step explanation:

Given

tanA = - [tex]\frac{\sqrt{5} }{1}[/tex] = [tex]\frac{opposite}{adjacent}[/tex]

This is a right triangle with opposite = [tex]\sqrt{5}[/tex], adjacent = 1 and

hypotenuse h² = ([tex]\sqrt{5}[/tex] )² + 1² = 5 + 1 = 6 ⇒ h = [tex]\sqrt{6}[/tex]

Since tanA < 0 and cosA > 0 then A is in the 4th quadrant where sinA < 0

Then

sinA = - [tex]\frac{opposite}{hypotenuse}[/tex] = - [tex]\frac{\sqrt{5} }{\sqrt{6} }[/tex]