Answer:
2 units of x and 2 units of y
Explanation:
The model can be represented as:
[tex]\begin{array}{cccc} & {x} & {y} & {} & {Materials} & {9} & {5} & {30} & {Labor} & {12} & {15} & {60} & {} & {300} & {250} \ \end{array}[/tex]
So, we have:
Max [tex]z = 300x + 250y[/tex] --- the objective function
Subject to:
[tex]9x + 5y \le 30[/tex]
[tex]12x + 15y \le 60[/tex]
[tex]x,y > 0[/tex]
Multiply the first equation by 3
[tex]9x + 5y \le 30[/tex] becomes
[tex]27x + 15y \le 90[/tex]
Subtract [tex]12x + 15y \le 60[/tex] from [tex]27x + 15y \le 90[/tex]
[tex]27x - 12x + 15y - 15y \le 90 - 60[/tex]
[tex]15x \le 30[/tex]
Divide by 15
[tex]x \le 2[/tex]
Substitute 2 for x in [tex]9x + 5y \le 30[/tex]
[tex]9 * 2 + 5y \le 30[/tex]
[tex]18 + 5y \le 30[/tex]
Collect like terms
[tex]5y \le 30 - 18[/tex]
[tex]5y \le 12[/tex]
Divide by 5
[tex]y \le 2.4[/tex]
y must be an integer;
So:
[tex]y \le 2[/tex]
So, we have:
[tex](x,y) \le (2,2)[/tex]
Hence, the company must product 2 units of x and 2 units of y