Answer:
[tex]s(v) \ge 4[/tex]
Step-by-step explanation:
Given
[tex]s(v) = \sqrt[3]{v}[/tex]
[tex]v = 64[/tex] ---- minimum
Required
The range of s
s represents the side length of the cube.
So, first we solve for s in [tex]s(v) = \sqrt[3]{v}[/tex]
Substitute [tex]v = 64[/tex]
[tex]s = \sqrt[3]{64}[/tex]
[tex]s = 4[/tex]
This means that [tex]s = 4[/tex] when [tex]v = 64[/tex]
In other words, the minimum value of s is 4
Hence, the range is:
[tex]s(v) \ge 4[/tex]