Respuesta :

The solutions would be x1=-6 and x2= 1

Answer:

x=-6 and x=1

Step-by-step explanation:

Given that:

[tex]3x^2+15x-18[/tex]

Now,

[tex]3x^2+15x-18=0\\[/tex]

Using the quadratic formula where a=3, b=15, and C=-18

x=-b±[tex]\sqrt{b^2-4ac} /2a[/tex]

x=-15±[tex]{\sqrt{15^2-4(3)(-18} } /2(3)[/tex]

x=-15±[tex]\sqrt{441} /6[/tex]

the discriminant [tex]b^2-4ac>0[/tex]

So, there are two real roots

x=-15±21/6

[tex]x=\frac{6}{6} \\x=1\\x=\frac{-36}{6} \\x=-6[/tex]

Therefore, x=-6 and x=1