Write an augmented matrix of each system. Then, solve each system using matrix notation. Describe the solution set in vector notation.

Respuesta :

Answer:

The answer is below

Step-by-step explanation:

Given the system of equations:

x + y + 2z = 9

2x + 4y - 3z = 1

3x + 6y - 5z = 0

This system of equation can be solved using matrix. This done by first representing the equations as matrix and then solving:

The matrix form is:

[tex]\left[\begin{array}{ccc}1&1&2\\2&4&-3\\3&6&-5\end{array}\right] \left[\begin{array}{c}x\\y\\z\end{array}\right] = \left[\begin{array}{c}9\\1\\0\end{array}\right] \\\\\\ \left[\begin{array}{c}x\\y\\z\end{array}\right] =\left[\begin{array}{ccc}1&1&2\\2&4&-3\\3&6&-5\end{array}\right] ^{-1} \left[\begin{array}{c}9\\1\\0\end{array}\right] \\\\\\[/tex]

[tex]\left[\begin{array}{c}x\\y\\z\end{array}\right] =\left[\begin{array}{ccc}2&-17&11\\-1&11&-7\\0&3&-2\end{array}\right] \left[\begin{array}{c}9\\1\\0\end{array}\right] \\\\\\ \left[\begin{array}{c}x\\y\\z\end{array}\right] =\left[\begin{array}{c}1\\2\\3\end{array}\right][/tex]

Ver imagen raphealnwobi