I need help finding the solution

==========================================================
Explanation:
If you apply the distance formula, you should find that triangle DEF has the following side lengths
Those distances are exact. The sqrt(50) approximates to 7.071
Since 7.071 is the longest side, we'll make c = sqrt(50)
Then we have a = 5 and b = 5
Note that a^2+b^2 = 5^2+5^2 = 50 while c^2 = (sqrt(50))^2 = 50
Both a^2+b^2 and c^2 are equal to 50.
That means a^2+b^2 = c^2 is a true equation for the a,b,c values mentioned.
By the converse of the pythagorean theorem, we have shown that triangle DEF is a right triangle.
---------------
Side notes:
Answer:
right
Step-by-step explanation:
we should find the distance of
DE
EF
FD
for DE
D(2,3) = (x1,y1)
E(5,7) = (x2,y2)
disatnce = [tex]\sqrt{(x2 - x1)^2 + (y2 - y1)^2}[/tex]
=[tex]\sqrt{(5-2)^2 + (7-3)^2}[/tex]
=[tex]\sqrt{3^2 + 4^2}[/tex]
=[tex]\sqrt{16+9}[/tex]
=[tex]\sqrt{25}[/tex]
=5 units
for EF
E(5,7) = (x1 , y1)
F(9,4) = (x2 , y2)
distance =[tex]\sqrt{(x2 - x1)^2 + (y2 - y1)^2}[/tex]
=[tex]\sqrt{(9-5)^2 + (4-7)^2}[/tex]
=[tex]\sqrt{(4)^2 + (-3)^2}[/tex]
=[tex]\sqrt{16 + 9}[/tex]
=[tex]\sqrt{25}[/tex]
=5 units
for DF
D(2,3) = (x1 , y1)
F(9,4) = (x2 , y2)
diatance =[tex]\sqrt{(x2 - x1)^2 + (y2 - y1)^2}[/tex]
=[tex]\sqrt{(9-2)^2 + (4-3)^2}[/tex]
=[tex]\sqrt{7^2 + 1^2}[/tex]
=[tex]\sqrt{49 + 1}[/tex]
=[tex]\sqrt{50}[/tex]
=[tex]5\sqrt{2}[/tex]
It is a right angle triangle .
to prove right angle triangle
sum of square of two smaller sides = sum of square of longest side
5^2 + 5^2 =[tex](5\sqrt{2})^2[/tex]
25 + 25 = 52 *2
50 + 50
hence proved.