An inverted pyramid is being filled with water at a constant rate of 70 cubic centimeters per second. The pyramid, at the top, has the shape of a square with sides of length 8 cm, and the height is 15 cm. Find the rate at which the water level is rising when the water level is 4 cm.

Respuesta :

Answer:

[tex]\frac{dh}{dt}=1.45cmsec^{-1}[/tex]

Step-by-step explanation:

Rate of Water Fill [tex]R=\frac{dv}{dt}=70cm^3[/tex]

Length [tex]l=8cm[/tex]

Height [tex]H=15cm[/tex]

Water level [tex]L_w= 4cm[/tex]

Generally the equation for relationship b/w h and a is mathematically given by

Since by the properties of similar triangles

 [tex]k=\frac{h}{1/2}[/tex]

Let

 [tex]h=15cm \\\\a=8cm[/tex]

 [tex]k=\frac{h}{1/2a}[/tex]

 [tex]k=\frac{15}{4}[/tex]

Therefore

 [tex]\frac{h}{1/2a}=\frac{15}{4}[/tex]

 [tex]a=\frac{8h}{15}[/tex]

Generally the equation for volume of Pyramid is mathematically given by

 [tex]V=\frac{1}{3}ah^2h[/tex]

Subsitute a

 [tex]V=\frac{1}{3}(\frac{8h}{15})h^2h[/tex]

Therefore

 [tex]\frac{dv}{dt}=\frac{(\frac{1}{3}(\frac{8h}{15})h^2h)}{dt}[/tex]

 [tex]\frac{dv}{dt}=\frac{64}{255}(h^2\frac{dh}{dt})[/tex]

Since

 [tex]\frac{dv}{dt}=70cm^3s^{-1}[/tex]

Therefore

 [tex]70cm^3s^{-1}=\frac{64}{255}(h^2\frac{dh}{dt})[/tex]

 [tex]\frac{dh}{dt}=\frac{70}{169}*\frac{225}{64}[/tex]

 [tex]\frac{dh}{dt}=1.45cmsec^{-1}[/tex]