Respuesta :

Answer:

J

Step-by-step explanation:

Using the cofunction identity

cosθ = sin([tex]\frac{\pi }{2}[/tex] - θ )

Then

[tex]\frac{1}{sin(\frac{\pi }{2}-0) }[/tex]

= [tex]\frac{1}{cos0}[/tex]

= [tex]\frac{1}{0.8}[/tex]

= 1.25 → J

The value of 1/sin([tex]\frac{\pi }{2}[/tex] - θ) is 1.25.

What are four quadrants of trigonometry?

The coordinate axes divide the plane into four quadrants, labelled first, second, third and fourth as shown. Angles in the third quadrant, for example, lie between 180 degrees and 270 degrees.

Given

1/cosθ = 0.8

1/sin([tex]\frac{\pi }{2}[/tex] - θ) =?

By using quadrants in trigonometry

we know that sin([tex]\frac{\pi }{2}[/tex] - θ) = cosθ

= 1/sin([tex]\frac{\pi }{2}[/tex] - θ)

= 1/cosθ

= 1/0.8

= 1.25

1/sin([tex]\frac{\pi }{2}[/tex] - θ) = 1.25

Hence, the value of 1/sin([tex]\frac{\pi }{2}[/tex] - θ) is 1.25.

Learn more about four quadrants of trigonometry here

https://brainly.com/question/21864197

#SPJ2

Ver imagen HafsaM
Ver imagen HafsaM