If cos theta = 0.8, find 1 / sin (pi/2 - theta)

Answer:
J
Step-by-step explanation:
Using the cofunction identity
cosθ = sin([tex]\frac{\pi }{2}[/tex] - θ )
Then
[tex]\frac{1}{sin(\frac{\pi }{2}-0) }[/tex]
= [tex]\frac{1}{cos0}[/tex]
= [tex]\frac{1}{0.8}[/tex]
= 1.25 → J
The value of 1/sin([tex]\frac{\pi }{2}[/tex] - θ) is 1.25.
The coordinate axes divide the plane into four quadrants, labelled first, second, third and fourth as shown. Angles in the third quadrant, for example, lie between 180 degrees and 270 degrees.
Given
1/cosθ = 0.8
1/sin([tex]\frac{\pi }{2}[/tex] - θ) =?
By using quadrants in trigonometry
we know that sin([tex]\frac{\pi }{2}[/tex] - θ) = cosθ
= 1/sin([tex]\frac{\pi }{2}[/tex] - θ)
= 1/cosθ
= 1/0.8
= 1.25
1/sin([tex]\frac{\pi }{2}[/tex] - θ) = 1.25
Hence, the value of 1/sin([tex]\frac{\pi }{2}[/tex] - θ) is 1.25.
Learn more about four quadrants of trigonometry here
https://brainly.com/question/21864197
#SPJ2