Answer:
The correct answer is "[tex]\frac{4E}{3}[/tex]".
Explanation:
According to the question,
Energy of satellite,
⇒ [tex]E_s=-\frac{GM_sM_E}{2r}[/tex]
For the very 1st case:
[tex]r = R_E+R_E[/tex]
[tex]=2R_E[/tex]
or,
⇒ [tex]E=-\frac{GM_sM_E}{4R_E}[/tex]...(1)
For the new case:
[tex]r = R_E+\frac{R_E}{2}[/tex]
[tex]=\frac{3R_E}{2}[/tex]
then,
⇒ [tex]E'=-\frac{GM_sM_E}{2 \frac{3R_E}{2} }[/tex]
[tex]=-\frac{GM_sM_E}{3R_E}[/tex]...(2)
From equation (1) and (2), we get
⇒ [tex]E'=\frac{1}{3}(4E)[/tex]
[tex]=\frac{4E}{3}[/tex]