A 2890-lb car is traveling with a speed of 58 mi/hr as it approaches point A. Beginning at A, it decelerates uniformly to a speed of 18 mi/hr as it passes point C of the horizontal and unbanked ramp. Determine the total horizontal force F exerted by the road on the car just after it passes point B.

Respuesta :

Answer:

4592.57 lb

Explanation:

The missing diagram for this question is attached in the image below.

Given that:

the weight of the car = 2890 lb

At point A, the speed of the car [tex](V_A)[/tex] = 58 mi/hr

At point C, the speed of the car [tex](V_C)[/tex] = 18 mi/hr

To ft/s:

[tex](V_A)[/tex]  = 58 mi/hr × 5280 ft/1 mi × 1 hr/3600 s

[tex](V_A)[/tex]  = 85.07 ft/s

[tex](V_C)[/tex] = 18 mi/hr × 5280 ft/1 mi × 1 hr/3600 s

[tex](V_C)[/tex] = 26.4 ft/s

Between A to C, the total distance is;

[tex]S_{AC} = S_{AB}} + S_{BC} \\ \\ S_{AC} = 331 + \dfrac{\pi r}{2} \\ \\ S_{AC}= 331 + \dfrac{\pi \times 207}{2} \\ \\ S_{AC} = 656.154 \ ft[/tex]

Now, we need to determine the deceleration of the car using the formula:

[tex]V_C^2 = V_A^2 + 2 aS_{AC}[/tex]

[tex]26.4^2 = 85.07^2 + 2 a (654.154)[/tex]

[tex]696.96 = 7236.9049+ 2 a (654.154)[/tex]

[tex]696.96-7236.9049 = 2 a (654.154)[/tex]

[tex]-6539.9449 = 2 a (654.154)[/tex]

[tex]a= \dfrac{-6539.9449} {2(654.154)}[/tex]

a = -4.99 ft/s²

The velocity of the car as it passes via B

[tex]v_B^2 = v_A^2 + 2aS_{AB}[/tex]

[tex]v_B^2 = 85.07^2 + 2(-4.99 \times 331)[/tex]

[tex]v_B =\sqrt{ 85.07^2 + 2(-4.99 \times 331)}[/tex]

[tex]v_B =\sqrt{ 85.07^2 +3303.38}[/tex]

[tex]v_B =\sqrt{ 10540.2849}[/tex]

[tex]v_B =102.67 \ ft/s[/tex]

Along B, the car's acceleration is:

[tex]a_B = \sqrt{a^2 + (\dfrac{v_B^2}{r})^2}[/tex]

[tex]a_B = \sqrt{(-4.99)^2 + \dfrac{102.67^2}{207}^2 }[/tex]

[tex]a_B = 51.17 \ ft/s^2[/tex]

Finally, the total horizontal force F exerted = m[tex]a_B[/tex]

[tex]= (\dfrac{2890}{32.2}) \times 51.17[/tex]

= 4592.57 lb

Ver imagen ajeigbeibraheem