Respuesta :
For the answer to the question above, let us assume that all Co2 is given off and this are the mass that is lost:
mass at start = 14.00 = 56.70 = 70.70g
mass at end = 64.96g
mass lost = 5.74g
I hope my answer helped you. Have a nice day!
mass at start = 14.00 = 56.70 = 70.70g
mass at end = 64.96g
mass lost = 5.74g
I hope my answer helped you. Have a nice day!
Answer : The mass of [tex]CO_2[/tex] produced will be, 6.16 grams.
Explanation : Given,
Mass of [tex]CaCO_3[/tex] = 14 g
Mass of [tex]HCl[/tex] = 56.70 g
Molar mass of [tex]CaCO_3[/tex] = 100 g/mole
Molar mass of [tex]HCl[/tex] = 36.5 g/mole
Molar mass of [tex]CO_2[/tex] = 44 g/mole
First we have to calculate the moles of [tex]CaCO_3[/tex] and [tex]HCl[/tex].
[tex]\text{Moles of }CaCO_3=\frac{\text{Mass of }CaCO_3}{\text{Molar mass of }CaCO_3}=\frac{14g}{100g/mole}=0.14moles[/tex]
[tex]\text{Moles of }HCl=\frac{\text{Mass of }HCl}{\text{Molar mass of }HCl}=\frac{56.70g}{36.5g/mole}=1.55moles[/tex]
Now we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,
[tex]CaCO_3(s)+2HCl(aq)\rightarrow CO_2(g)+H_2O(l)+CaCl_2(aq)[/tex]
From the balanced reaction we conclude that
As, 1 moles of [tex]CaCO_3[/tex] react with 2 mole of [tex]HCl[/tex]
So, 0.14 moles of [tex]CaCO_3[/tex] react with [tex]0.14\times 2=0.28[/tex] moles of [tex]HCl[/tex]
From this we conclude that, [tex]HCl[/tex] is an excess reagent because the given moles are greater than the required moles and [tex]CaCO_3[/tex] is a limiting reagent and it limits the formation of product.
Now we have to calculate the moles of [tex]CO_2[/tex].
As, 1 moles of [tex]CaCO_3[/tex] react to give 1 moles of [tex]CO_2[/tex]
So, 0.14 moles of [tex]CaCO_3[/tex] react to give 0.14 moles of [tex]CO_2[/tex]
Now we have to calculate the mass of [tex]CO_2[/tex].
[tex]\text{Mass of }CO_2=\text{Moles of }CO_2\times \text{Molar mass of }CO_2[/tex]
[tex]\text{Mass of }CO_2=(0.14mole)\times (44g/mole)=6.16g[/tex]
Therefore, the mass of [tex]CO_2[/tex] produced will be, 6.16 grams.