Respuesta :

I hope this helps you
Ver imagen Аноним

Answer:

[tex]m{\angle}D=60^{\circ}[/tex]

Step-by-step explanation:

From the given figure, it can be seen that [tex]m{\angle}A=60^{\circ}[/tex], [tex]m{\angle}B=60^{\circ}[/tex], thus

From ΔABD, using the angle sum property, we have

[tex]m{\angle}A+m{\angle}B+m{\angle}D=180^{\circ}[/tex]

⇒[tex]60^{\circ}+60^{\circ}+m{\angle}D=180^{\circ}[/tex]

⇒[tex]120^{\circ}+m{\angle}D=180^{\circ}[/tex]

⇒[tex]m{\angle}D=180^{\circ}-120^{circ}[/tex]

⇒[tex]m{\angle}D=60^{\circ}[/tex]

therefore, the measure of [tex]{\angle}ADB[/tex] is [tex]60^{\circ}[/tex].

Hence, ΔABD is an equilateral triangle.