The diagram below shows a square inside a regular octagon. The apothem of the octagon is 13.28 units. To the nearest square unit, what is the area of the shaded region?

The diagram below shows a square inside a regular octagon The apothem of the octagon is 1328 units To the nearest square unit what is the area of the shaded reg class=

Respuesta :

I hope this helps you
Ver imagen Аноним

Area of shaded region is 463 square units.

What is area of octagon?

Area of octagon = [tex]\frac{1}{2}[/tex] × [tex]8[/tex] × base × height

What is apothem of octagon?

The apothem of any polygon is equal to the line that connects the center of the polygon with one of its sides perpendicularly. Using the apothem, we can calculate the area of the polygons in an easier way.

Given

Apothem of the octagon = 13.28 units

Base of octagon = 11 units

Area of octagon = [tex]\frac{1}{2}[/tex] × [tex]8[/tex] × base × height

= [tex]\frac{1}{2}[/tex] × [tex]11[/tex] × [tex]13.28[/tex] × [tex]8[/tex]

= 584.32

Area of square = side × side

= 11 × 11

= 121

Area of shaded region = Area of octagon - Area of square

= 84.32 - 121

= 463.32

≅ 463 square units.

Hence, area of shaded region is 463 square units.

Learn more about area of octagon and apothem of octagon here

https://brainly.com/question/4503941

#SPJ2