Respuesta :

I hope this helps you
Ver imagen Аноним

Answer:

AC = BD = 1 unit

Step-by-step explanation:

 Given : length of diagonal of rectangle ABCD  [tex]AC=\frac{3y}{5}[/tex] and [tex]BD=3y-4[/tex]

We have to find the length of diagonal.

We know In rectangle diagonal are of equal lengths.

Therefore, for rectangle ABCD diagonals AC= BD

Substitute the values, we get,

[tex]\frac{3y}{5}=3y-4[/tex]

Cross multiply , we get

[tex]3y=5(3y-4)[/tex]

On simplyfy , we get

[tex]3y=15y-20[/tex]

Solve for y , we get

[tex]15y-3y=20[/tex]

[tex]12y=20[/tex]

Divide both side by 12, we get,

[tex]y=\frac{20}{12}=\frac{10}{6}[/tex]

Thus, put the values of y in AC and BD to find the length of diagonals , we get,

[tex]AC=\frac{3y}{5}=\frac{3}{5}\times\frac{10}{6}=1[/tex]

Similarly for BC, we get,

[tex]BD=3y-4=3(\frac{10}{6})-4=5-4=1[/tex]

Thus, AC = BD = 1 unit