M13
contestada

Let θ be an angle in Quadrant II such that cot θ = -3. Find the exact values for sin θ, cos θ, and tan θ.

Respuesta :

Here, I've attached a picture of the triangle that accompanies this explanation. 

cot = [tex] \frac{1}{tan} [/tex] = [tex] \frac{1}{ \frac{sin}{cos} } [/tex] = [tex] \frac{cos}{sin} [/tex]

Now view the triangle.
PS. Angle theta will have a coordinate of (-, +) because it is in quadrant II.

sin of the angle would be opposite/hypotenuse, so sin = [tex] \frac{1}{ \sqrt{10} } [/tex]
cos of the angle would be adjacent/hypotenuse, so cos = [tex] \frac{-3}{ \sqrt{10} } [/tex]
tan of the angle would be opposite/adjacent, so tan = [tex] - \frac{1}{3} [/tex]


Ver imagen Аноним
If angle theta is on Quadrant II, then it will have a coordinate of (-,+)


cot(theta) = x/y = -3/1
*Note: x^2 + y^2 = r^2 so, (-3^2) + (1^2) = [sqrt(10)]^2
r = sqrt(10)
sin(theta) = y/r = 1/sqrt(10)
cos(theta) = x/r = -3/sqrt (10)
tan(theta) = y/x = 1/-3