Respuesta :

Space

Answer:

[tex]\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C[/tex]

General Formulas and Concepts:

Algebra I

  • Terms/Coefficients
  • Factoring

Algebra II

  • Polynomial Long Division

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Property [Multiplied Constant]:                                                         [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:                                                       [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

Step 1: Define

Identify

[tex]\displaystyle \int {\frac{2x}{3x + 1}} \, dx[/tex]

Step 2: Integrate Pt. 1

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           [tex]\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx[/tex]
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               [tex]\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx[/tex]
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               [tex]\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx[/tex]
  4. [1st Integral] Reverse Power Rule:                                                               [tex]\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx[/tex]

Step 3: Integrate Pt. 2

Identify variables for u-substitution.

  1. Set u:                                                                                                             [tex]\displaystyle u = 3x + 1[/tex]
  2. [u] Differentiate [Basic Power Rule]:                                                             [tex]\displaystyle du = 3 \ dx[/tex]

Step 4: Integrate Pt. 3

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 [tex]\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx[/tex]
  2. [Integral] U-Substitution:                                                                               [tex]\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du[/tex]
  3. [Integral] Logarithmic Integration:                                                               [tex]\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C[/tex]
  4. Back-Substitute:                                                                                            [tex]\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C[/tex]
  5. Factor:                                                                                                           [tex]\displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3} \bigg) + C[/tex]
  6. Rewrite:                                                                                                         [tex]\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

Ver imagen Space