Respuesta :
[tex]\boxed{ \sf{Answer}} [/tex]
[tex] \large{\sf\frac{a + 1}{a - 1} + \frac{ {a - 1}^{2} }{a + 1}} [/tex]
Use the algebraic identities ⟶
- [tex]{\sf(a - b)(a + b) = {a}^{2} - b ^{2}} [/tex]
- [tex]{\sf(a + b) {}^{2} = {a}^{2} + 2ab - {b}^{2}} [/tex]
- [tex]{\sf(a - b) {}^{2} = {a}^{2} - 2ab + {b}^{2}} [/tex]
Squaring on both the sides
[tex] {\sf\frac{(a + 1 {)}^{2} + ( {a - 1)}^{2} }{(a - 1)(a + 1)}} [/tex]
[tex]=\frac{ {a}^{2} + 2a + 1 + {a}^{2} - 2a + 1 }{ {a}^{2} - 1 } \\ = \frac{ {a}^{2} +\bcancel 2a + 1 + {a}^{2} - \bcancel2a + 1 }{ {a}^{2} - 1 } \\ = \frac{ {a}^{2} + {a}^{2} + 1 + 1 }{ {a}^{2} - 1}[/tex]
[tex]\large\boxed{\sf{⟹\frac{ {2a}^{2} + 2}{ {a}^{2} - 1 }}} [/tex]
ʰᵒᵖᵉ ⁱᵗ ʰᵉˡᵖˢ
꧁❣ ʀᴀɪɴʙᴏᴡˢᵃˡᵗ2²2² ࿐