Xatana
contestada

find the lateral surface area of this cylinder. round to the nearest tenth. r=5cm 5cm LSA (in the image)​

find the lateral surface area of this cylinder round to the nearest tenth r5cm 5cm LSA in the image class=

Respuesta :

Answer:

157 cm²

Step-by-step explanation:

A cylinder is given to us and we need to find out the lateral surface area of the cylinder . We can see that the ,

Height = 5cm

Radius = 5cm

We know that we can find the lateral surface area of the cylinder as ,

[tex]\rm\implies LSA_{cylinder}= 2\pi r h [/tex]

Substitute upon the respective values ,

[tex]\rm\implies LSA = 2 \times 3.14 \times 5cm \times 5cm [/tex]

Multiply the numbers ,

[tex]\rm\implies \boxed{\blue{\rm LSA = 157 \ cm^2 }}[/tex]

Hence the Lateral surface area of the cylinder is 157 cm² .

[tex] \setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{5cm}}\put(9,17.5){\sf{5cm}}\end{picture}[/tex]

Answer:

314.2 is the Surface area

Step-by-step explanation:

Hope it Helps! If you have any questions, feel free to comment! :)

2π(5)(5)+2π(5^2)

2π(25)+2[tex]\pi[/tex](25)

50π+50π=100π

314.2 is the answer. That's what we get after rounding up! :)