Answer:
Number of oscillation = 106 oscillations
Explanation:
Given the following data;
To find how many complete oscillations the pendulum makes in 5.00 min;
First of all, we would determine the period of oscillation of the pendulum using the following formula;
[tex] T = 2 \pi \sqrt{\frac{l}{g}} [/tex]
Where;
Substituting into the formula, we have;
[tex] T = 2 * 3.142 \sqrt{\frac{2}{9.8}} [/tex]
[tex] T = 6.284 \sqrt{0.2041} [/tex]
[tex] T = 6.284 * 0.4518 [/tex]
Period, T = 2.84 seconds
Next, we would determine the number of complete oscillation in 5 minutes;
We would have to convert the time in minutes to seconds.
Conversion:
1 minutes = 60 seconds
5 minutes = X seconds
Cross-multiplying, we have;
X = 5 * 60 = 300 seconds
Mathematically, the number of oscillation of a pendulum is given by the formula;
[tex] Number \; of \; oscillation = \frac {Time}{Period} [/tex]
Substituting into the formula, we have;
[tex] Number \; of \; oscillation = \frac {300}{2.84} [/tex]
Number of oscillation = 105.63 ≈ 106 oscillations
Number of oscillation = 106 oscillations