Ashish deposite rs 1000 every month is a recurring deposit account for period of 12 months. If the bank pays interest at a certain rate p.A. And ashish gets 12715 as the maturity value of this account at what rate of interest did he pay every month

Respuesta :

Solution :

Given :

Principal amount, P = Rs. 1000

Time period = 12 months

The maturity value = Rs. 12,715

We know that,

[tex]$ SI = \frac{PTR}{100}$[/tex]

[tex]$SI = 1000 \times \frac{n(n+1)}{2 \times 12} \times \frac{R}{100}$[/tex]

[tex]$SI = 1000 \times \frac{12(12+1)}{2 \times 12} \times \frac{R}{100}$[/tex]

SI = 65 R

So we know,

maturity value = principal amount + SI

12715 = 1000 + 65 R

65 R = 12715 - 1000

65 R = 11715

R = 18%        

So the rate is 18%

                           

Answer:

[tex]R=11\%[/tex] p.a.

Step-by-step explanation:

Given:

the principal amount deposited each month, [tex]P=Rs. 1000[/tex]

amount after maturity of one year, [tex]A=Rs. 12715[/tex]

We have the formula as:

[tex]I=\frac{PR}{100}\times\frac{T(T+1)}{2\times 12}[/tex]

where:

R = rate of interest per annum

T = time in months

[tex]A-12P=\frac{PR}{100}\times\frac{T(T+1)}{2\times 12}[/tex]    [since the principal is deposited each month]

[tex]715=\frac{1000\times R}{100}\times \frac{12\times 13}{24}[/tex]

[tex]R=11\%[/tex] p.a.