Respuesta :

Answer:

u = 2

Step-by-step explanation:

Since this is a right triangle, we can use trig functions

cos theta = adj side / hypotenuse

cos 45 = sqrt(2) / u

u cos 45 = sqrt(2)

u = sqrt(2) / cos 45

u = sqrt(2) / 1/ sqrt(2)

u = sqrt(2) * sqrt(2)

u =2

msm555

u=2

Answer:

Solution given:

Relationship between base and hypotenuse is given by cos angle.

Cos 45°=base/hypotenuse

[tex]\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{u}[/tex]

doing crisscrossed multiplication

[tex]\sqrt{2}*\sqrt{2}=1*u[/tex]

u=2