Respuesta :

Space

Answer:

[tex]\displaystyle 64[/tex]

General Formulas and Concepts:

Calculus

Limits

Limit Rule [Variable Direct Substitution]:                                                             [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Limit Rule [Variable Direct Substitution Exponential]:                                         [tex]\displaystyle \lim_{x \to c} x^n = c^n[/tex]

Limit Property [Multiplied Constant]:                                                                     [tex]\displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \lim_{x \to 0} f(x) = 4[/tex]

Step 2: Solve

  1. Rewrite [Limit Property - Multiplied Constant]:                                           [tex]\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4} \lim_{x \to 0} [f(x)]^4[/tex]
  2. Evaluate limit [Limit Rule - Variable Direct Substitution Exponential]:       [tex]\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4}(4^4)[/tex]
  3. Simplify:                                                                                                         [tex]\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = 64[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

Book: College Calculus 10e

Answer: C. 64

Step-by-step explanation:

Edge 100%