A rigid, insulated tank whose volume is 10 L is initially evacuated. A pinhole leak develops and air from the surroundings at 1 bar, 25 C enters the tank until the pressure in the tank becomes 1 bar (assume ideal gas model k=1.4 for the air). Find:
A) final temperature in tank.
B) amount of air that leaks into tank in grams.
C) amount of entropy produced in J/K.

Respuesta :

Answer:

The answer is "[tex]143.74^{\circ} \ C , 8.36\ g, and \ 2.77\ \frac{K}{J}[/tex]"

Explanation:

For point a:

Energy balance equation:

[tex]\frac{dU}{dt}= Q-Wm_ih_i-m_eh_e\\\\[/tex]

[tex]W=0\\\\Q=0\\\\m_e=0[/tex]

From the above equation:

[tex]\frac{dU}{dt}=0-0+m_ih_i-0\\\\\Delta U=\int^{2}_{1}m_ih_idt\\\\[/tex]

because the rate of air entering the tank that is [tex]h_i[/tex] constant.

[tex]\Delta U = h_i \int^{2}_{1} m_i dt \\\\= h_i(m_2 -m_1)\\\\m_2u_2-m_1u_2=h_i(M_2-m_1)\\\\[/tex]

Since the tank was initially empty and the inlet is constant hence, [tex]m_2u-0=h_1(m_2-0)\\\\m_2u_2=h_1m_2\\\\u_2=h_1\\\\[/tex]

Interpolate the enthalpy between [tex]T = 300 \ K \ and\ T=295\ K[/tex]. The surrounding air  

temperature:

[tex]T_1= 25^{\circ}\ C\ (298.15 \ K)\\\\\frac{h_{300 \ K}-h_{295\ K}}{300-295}= \frac{h_{300 \ K}-h_{1}}{300-295.15}[/tex]

Substituting the value from ideal gas:

[tex]\frac{300.19-295.17}{300-295}=\frac{300.19-h_{i}}{300-298.15}\\\\h_i= 298.332 \ \frac{kJ}{kg}\\\\Now,\\\\h_i=u_2\\\\u_2=h_i=298.33\ \frac{kJ}{kg}[/tex]

Follow the ideal gas table.

The [tex]u_2= 298.33\ \frac{kJ}{kg}[/tex] and between temperature [tex]T =410 \ K \ and\ T=240\ K.[/tex]

Interpolate

[tex]\frac{420-410}{u_{240\ k} -u_{410\ k}}=\frac{420-T_2}{u_{420 k}-u_2}[/tex]

Substitute values from the table.

 [tex]\frac{420-410}{300.69-293.43}=\frac{420-T_2}{{u_{420 k}-u_2}}\\\\T_2=416.74\ K\\\\=143.74^{\circ} \ C\\\\[/tex]

For point b:

Consider the ideal gas equation.  therefore, p is pressure, V is the volume, m is mass of gas. [tex]\bar{R} \ is\ \frac{R}{M}[/tex] (M is the molar mass of the  gas that is [tex]28.97 \ \frac{kg}{mol}[/tex] and R is gas constant), and T is the temperature.

[tex]n=\frac{pV}{TR}\\\\[/tex]

[tex]=\frac{(1.01 \times 10^5 \ Pa) \times (10\ L) (\frac{10^{-3} \ m^3}{1\ L})}{(416.74 K) (\frac{8.314 \frac{J}{mol.k} }{2897\ \frac{kg}{mol})}}\\\\=8.36\ g\\\\[/tex]

For point c:

 Entropy is given by the following formula:

[tex]\Delta S = mC_v \In \frac{T_2}{T_1}\\\\=0.00836 \ kg \times 1.005 \times 10^{3} \In (\frac{416.74\ K}{298.15\ K})\\\\=2.77 \ \frac{J}{K}[/tex]