Respuesta :
Answer:
The answer is "[tex]143.74^{\circ} \ C , 8.36\ g, and \ 2.77\ \frac{K}{J}[/tex]"
Explanation:
For point a:
Energy balance equation:
[tex]\frac{dU}{dt}= Q-Wm_ih_i-m_eh_e\\\\[/tex]
[tex]W=0\\\\Q=0\\\\m_e=0[/tex]
From the above equation:
[tex]\frac{dU}{dt}=0-0+m_ih_i-0\\\\\Delta U=\int^{2}_{1}m_ih_idt\\\\[/tex]
because the rate of air entering the tank that is [tex]h_i[/tex] constant.
[tex]\Delta U = h_i \int^{2}_{1} m_i dt \\\\= h_i(m_2 -m_1)\\\\m_2u_2-m_1u_2=h_i(M_2-m_1)\\\\[/tex]
Since the tank was initially empty and the inlet is constant hence, [tex]m_2u-0=h_1(m_2-0)\\\\m_2u_2=h_1m_2\\\\u_2=h_1\\\\[/tex]
Interpolate the enthalpy between [tex]T = 300 \ K \ and\ T=295\ K[/tex]. The surrounding air
temperature:
[tex]T_1= 25^{\circ}\ C\ (298.15 \ K)\\\\\frac{h_{300 \ K}-h_{295\ K}}{300-295}= \frac{h_{300 \ K}-h_{1}}{300-295.15}[/tex]
Substituting the value from ideal gas:
[tex]\frac{300.19-295.17}{300-295}=\frac{300.19-h_{i}}{300-298.15}\\\\h_i= 298.332 \ \frac{kJ}{kg}\\\\Now,\\\\h_i=u_2\\\\u_2=h_i=298.33\ \frac{kJ}{kg}[/tex]
Follow the ideal gas table.
The [tex]u_2= 298.33\ \frac{kJ}{kg}[/tex] and between temperature [tex]T =410 \ K \ and\ T=240\ K.[/tex]
Interpolate
[tex]\frac{420-410}{u_{240\ k} -u_{410\ k}}=\frac{420-T_2}{u_{420 k}-u_2}[/tex]
Substitute values from the table.
[tex]\frac{420-410}{300.69-293.43}=\frac{420-T_2}{{u_{420 k}-u_2}}\\\\T_2=416.74\ K\\\\=143.74^{\circ} \ C\\\\[/tex]
For point b:
Consider the ideal gas equation. therefore, p is pressure, V is the volume, m is mass of gas. [tex]\bar{R} \ is\ \frac{R}{M}[/tex] (M is the molar mass of the gas that is [tex]28.97 \ \frac{kg}{mol}[/tex] and R is gas constant), and T is the temperature.
[tex]n=\frac{pV}{TR}\\\\[/tex]
[tex]=\frac{(1.01 \times 10^5 \ Pa) \times (10\ L) (\frac{10^{-3} \ m^3}{1\ L})}{(416.74 K) (\frac{8.314 \frac{J}{mol.k} }{2897\ \frac{kg}{mol})}}\\\\=8.36\ g\\\\[/tex]
For point c:
Entropy is given by the following formula:
[tex]\Delta S = mC_v \In \frac{T_2}{T_1}\\\\=0.00836 \ kg \times 1.005 \times 10^{3} \In (\frac{416.74\ K}{298.15\ K})\\\\=2.77 \ \frac{J}{K}[/tex]