A farmer wants to build a rectangular pen and then divide it with two interior fences. The total area inside of the pen will be 264 square meters. The exterior fencing costs $15.60 per meter and the interior fencing costs $13.00 per meter. Find the dimensions of the pen that will minimize the cost.

Respuesta :

Answer:

x = 12 m and y = 22 m

Step-by-step explanation:

Total area = 264 [tex]m^2[/tex]

∴ xy = 264

 [tex]$y=\frac{264}{x}$[/tex]     ............(1)

Cost function = [tex]C(x,y) = 2 x (15.60) + 2y(15.60) + 2x(13)[/tex]

                          [tex]C(x,y) = 57.2 x + 31.2y[/tex]

Therefore, using (1),

[tex]$C(x) = 57.2x+31.2 \left(\frac{264}{x} \right)$[/tex]

[tex]$C(x) = 57.2x+\frac{8236.8}{x} \right)$[/tex]

So, cost C(x) minimum where C'(x) = 0

[tex]$C'(x) = 57.2 - \frac{8236.8}{x^2}=0$[/tex]

[tex]$x^2=\frac{8236.8}{57.2}$[/tex]

[tex]$x^2=144$[/tex]

[tex]$x=12$[/tex] m

Therefore, [tex]$y=\frac{264}{x}$[/tex]

                      [tex]$=\frac{264}{12}$[/tex]

                      = 22 m

So the dimensions are  x = 12 m and y = 22 m.

Ver imagen AbsorbingMan