Answer:
The manufacturer should advertise 11720 pages.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 12450, standard deviation of 570:
This means that [tex]\mu = 12450, \sigma = 570[/tex]
How many pages should the manufacturer advertise for each cartridge if it wants to be correct 90 percent of the time?
They should advertise the 10th percentile, which is X when Z has a p-value of 0.1, so X when Z = -1.28. Then
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.28 = \frac{X - 12450}{570}[/tex]
[tex]X - 12450 = -1.28*570[/tex]
[tex]X = 11720[/tex]
The manufacturer should advertise 11720 pages.