Respuesta :

The standard deviation of the data is 18 .1

How to calculate the standard deviation

Use the formula:

SD = √∑(x - ₓ⁻)^2 ÷ n

Where

x = data

x bar = mean

n = number of data set

To find the mean,

Use the formula:

mean = sum of data set ÷ number of data set

mean = 8 + 12+ 14+ 8+ 9 + 5 + 17 + 19+ 31+ 8 ÷ 10

Mean = 131÷ 10 = 13. 1

Standard deviation = [tex]\sqrt\frac{(8 -13.1) + (12-13.1) + (14-13.1) + (8-13.1) + (9- 13.1) + (5-13.1) + (17-13.1) + (19-13.1) + (31-13.1) + (8-13.1)}{10}[/tex]

Standard deviation = [tex]\frac{(-5.1 ) + (-1-.1) + (1.1) + (-5.1) + (-4.1) + (-8.1) + (3.9) + (5. 9) + (17.9) + 95.1)}{10}[/tex]

Standard deviation = [tex]\sqrt{\frac{57.4^{2} }{10} }[/tex]

Standard deviation = [tex]\sqrt{\frac{3294. 76}{10} }[/tex]

Standard deviation = [tex]\sqrt{329. 476}[/tex]

Standard deviation = 18. 15

Therefore, the standard deviation is 18. 1

Learn more about standard deviation here:

https://brainly.com/question/475676

#SPJ1