can uh help in in this question step by step

Convert to m/s
[tex]\\ \sf \longmapsto 72\times \dfrac{5}{18}=5(4)=20m/s[/tex]
[tex]\\ \sf \longmapsto Acceleration=\dfrac{v-u}{t}[/tex]
[tex]\\ \sf \longmapsto Acceleration=\dfrac{0-20}{2}[/tex]
[tex]\\ \sf \longmapsto Acceleration=\dfrac{-20}{2}[/tex]
[tex]\\ \sf \longmapsto Acceleration=a=-10m/s^2[/tex]
Using second equation of kinematics
[tex]\\ \sf \longmapsto s=ut+\dfrac{1}{2}at^2[/tex]
[tex]\\ \sf \longmapsto s=20(2)+\dfrac{1}{2}(-10)(2)^2[/tex]
[tex]\\ \sf \longmapsto s=40+(-20)[/tex]
[tex]\\ \sf \longmapsto s=40-20[/tex]
[tex]\\ \sf \longmapsto s=20m[/tex]
Now
Using newtons second law
[tex]\\ \sf \longmapsto Force=ma[/tex]
[tex]\\ \sf \longmapsto Force=5000(-10)[/tex]
[tex]\\ \sf \longmapsto Force=-50000N[/tex]
[tex]\\ \sf \longmapsto Force=50kN[/tex]
Answer . The acceleration of the truck is 10m/[tex]s^{2}[/tex], and the distance covered is 40 m. Have attached the picture for solution.
Hope that helps.