Respuesta :
Answer:
14/30
Step-by-step explanation:
How to simplify:
• divide both numerator and denominator by their GCF.
18/45
= 18 ÷ 9 / 45 ÷ 9
= 2/5
14/30
= 14 ÷ 2 / 30 ÷ 2
= 7/15
10/25
= 10 ÷ 5 / 25 ÷ 5
= 2/5
8/20
= 8 ÷ 4 / 20 ÷ 4
= 2/5
16/40
= 16 ÷ 8 / 40 ÷ 8
= 2/5
[tex]\tt{ \green{P} \orange{s} \red{y} \blue{x} \pink{c} \purple{h} \green{i} e}[/tex]
[tex]\frac{14}{30}[/tex] is not equivalent to [tex]\frac{2}{5}[/tex] in the list of fractions [tex]\frac{18}{45}, \frac{14}{30} , \frac{x}{y} \frac{10}{25}, \frac{8}{20}, \frac{16}{40}[/tex].
Equivalent Fractions
Equivalent fractions represent the same value even though they look different.
How to determine the Equivalent fractions?
We know we can find an equivalent fraction of a given fraction by or dividing both the numerator and denominator of the given fraction with the same number (maybe LCM or HCF of the numerator or denominator).
[tex]\frac{18}{45}=\frac{18/9}{45/9}=\frac{2}{5}[/tex] (since [tex]9[/tex] is HCF of [tex]18, 45[/tex])
[tex]\frac{14}{30}=\frac{14/2}{30/2}=\frac{7}{15}[/tex] (since [tex]2[/tex] is HCF of [tex]7, 15[/tex])
[tex]\frac{10}{25} =\frac{10/5}{25/5} =\frac{2}{5}[/tex] (since [tex]5[/tex] is HCF of [tex]10, 25[/tex])
[tex]\frac{8}{20} =\frac{8/4}{20/4} =\frac{2}{5}[/tex] (since [tex]4[/tex] is HCF of [tex]8, 20[/tex])
[tex]\frac{16}{40} =\frac{16/8}{40/8} =\frac{2}{5}[/tex] (since [tex]8[/tex] is HCF of [tex]16, 40[/tex])
Thus, [tex]\frac{14}{30}[/tex] is not equivalent to [tex]\frac{2}{5}[/tex].
Learn more about Equivalent fractions here- https://brainly.com/question/17912
#SPJ2