Respuesta :

Answer:

[tex] = - \frac{1}{36(6x + 1) ^{6} } + c[/tex]

I hope I helped you^_^

Answer:

[tex]-\frac{1}{36\left(6x+1\right)^6} +C[/tex]

Step-by-step explanation:

we're going to us u substitution

[tex]\int (6x+1)^-7 dx[/tex]

[tex]u=6x+1[/tex]

[tex]\int\frac{1}{6u^7} du[/tex]

take out the constant, [tex]\frac{1}{6}[/tex]

[tex]\frac{1}{6}[/tex] · [tex]\int u^-7du[/tex]

next use the power rule, [tex]\int x^adx=\frac{x^{a+1}}{a+1},\:\quad \:a\ne -1[/tex]

[tex]\frac{1}{6}\cdot \frac{u^{-7+1}}{-7+1}[/tex]

simplify by substituting [tex]6x+1[/tex] for [tex]u[/tex]

[tex]\frac{1}{6}\cdot \frac{(6x+1)^{-7+1}}{-7+1} = -\frac{1}{36\left(6x+1\right)^6}[/tex]

add a constant, [tex]C[/tex]

[tex]-\frac{1}{36\left(6x+1\right)^6} +C[/tex]