Respuesta :

caylus

Answer:

Step-by-step explanation:

[tex]2020x-215y=10000\\\\y=\dfrac{2020x-10000}{215} =\dfrac{404x-2000}{43} =9x-46+\dfrac{17x-22}{43} \\\\\\17x-22\ must\ be\ divisible\ by\ 43\\\\\Longrightarrow\ x=19+43*k[ method \ of\ Gauss\ or\ theorem\ of\ Bezout)\\\\\\min(x+y)=min(10*(19+43*k)-46+\dfrac{17(19+43k)-22}{43} )\\=min(151+447k)\\\\is\ min\ if\ k=0\\\\x=19\\y=9*19-46+\dfrac{17*19-22}{43} =171-46+7=132\\\\x+y=151\\[/tex]